Customer Logins

Obtain the data you need to make the most informed decisions by accessing our extensive portfolio of information, analytics, and expertise. Sign in to the product or service center of your choice.

Customer Logins

My Logins

All Customer Logins
S&P Global
Explore S&P Global
  • S&P Global
  • S&P Dow Jones Indices
  • S&P Global Market Intelligence
  • S&P Global Mobility
  • S&P Global Commodity Insights
  • S&P Global Ratings
  • S&P Global Sustainable1
Close
Discover more about S&P Global’s offerings.
Investor Relations
  • Investor Relations Overview
  • Presentations
  • Investor Fact Book
  • News Releases
  • Quarterly Earnings
  • SEC Filings & Reports
  • Executive Committee
  • Merger Information
  • Governance
  • Stock & Dividends
  • Shareholder Services
  • Contact
English
  • Español
  • 中文网站
  • Português
  • 한국어
  • हिंदी
  • 日本語
Support
  • Get Support
  • System Notifications
  • Delivery Platforms
  • Regulatory Engagement
Login
  • Commodity Insights Login
  • Access IHS Markit Products
Register
logo Commodity Insights
  • Commodities
  • Products & Solutions
  • News & Research
  • Pricing & Benchmarks
  • Events
  • Sustainable1
  • Who We Are
  • S&P Global
  • S&P Dow Jones Indices
  • S&P Global Market Intelligence
  • S&P Global Mobility
  • S&P Global Commodity Insights
  • S&P Global Ratings
  • S&P Global Sustainable1
  • Oil Upstream LNG Natural Gas Electric Power Coal Shipping Chemicals Metals Agriculture
    Latest in Commodities
    Listen: Change Makers: Rodney Clemente, Energy Recovery

    Energy Recovery, with roots in the desalination industry, designs and manufactures energy-efficiency...

    India woos upstream oil and gas investors with changes on revenue sharing, fiscal incentives

    India has unveiled a new set of policies for its oil and gas sector, under which it aims to offer a...

    PACIFIC LNG: Key market indicators for July 14-18

    Platts JKM, the benchmark price reflecting LNG delivered to Northeast Asia, is expected to stay firm...

  • Agriculture & Food Biofuels Chemicals Fertilizers Clean Energy Technology Gas & Power Crude Oil Fuels & Refined Products LNG Steel & Metals Upstream & Midstream (Oil & Gas) Crop Science Carbon & Scenarios Shipping
    Capabilities
    Market Insights and Analytics CI Consulting Commodity Prices and Essential Market Data Real-Time News, Prices and Analysis Forward Curves and Risk Valuation Data
    Data and Distribution
  • Latest News Headlines All Topics Videos Podcasts Special Reports Infographics Insight Blog    Commodity Insights Magazine Commodity Insights LIVE
  • Our Methodology Methodology & Specifications Price Assessments Subscriber Notes Price Symbols Symbol Search & Directories Corrections Complaints
    References
    Market On Close Index Methodology Review & Change MOC Participation Guidelines Holiday Dunl.org SEE ALL REFERENCE TOOLS
  • All Events Webinars Conferences Methodology Education Training and eLearning Forums Conferences Live Global Energy Awards    CERAWeek
    Featured Events
    Webinars Watt's new in the current affairs of Battery Metals
    • 28 Aug 2025
    • Online
    Webinars APPEC 2025
    • 28 Aug 2025
    • Online
    Webinar Madrid Market Briefing
    • 16 Sep 2025
    • Madrid, Spain
  • Overview Contact Us Regulatory Engagement & Market Issues Commodity Insights LIVE
BLOG Sep 07, 2016

Field optimization using IHS Piper – Part II: Cost cutting by shutting-in wells

Energy Expert

This article reviews features available in IHS Piper that can be used to test cost cutting for hydrocarbon gathering systems by shutting-in wells. General field optimization ideas and workflows are reviewed in a previous blog titled "Field Optimization Using IHS Piper - Part I: Optimizing Gathering Systems". You may want to visit that earlier post prior to reviewing this one.

Shutting-in wells will reduce operating costs, and may alleviate pipeline capacity issues, but it will also reduce total field production. The result may have positive impact on expenditures and operational issues but have a negative impact on revenues. Both positive and negative impacts should be considered when deciding if a scenario should be pursued.

In Figure 1 the Base Case is shown, and Figure 2 shows a scenario with two well pads shut-in. A frictional pressure loss map for the pipelines is displayed on the map view.

Figure 1: Base case model of gathering system. Note frictional pressure loss map legend in top right corner. The orange arrow indicates a trunk line with moderate frictional pressure losses.

Figure 2: Well shut-in scenario of the same gathering system shown in Figure 1. Note frictional pressure loss map legend in top right corner. The orange arrow indicates a trunk line with reduced frictional pressure losses. Grey bubbles surround wells that were shut-in for this scenario.

The diagnostic frictional pressure loss map shows that the scenario of shut-in wells reduces frictional pressure in one trunk line. You can also compare total field production for the base case and scenario. Figure 3 shows total production rates for the Base Case and Figure 4 shows total production rates for the scenario with shut-in wells.

Figure 3: Delivery rates for a 12 month forecast for the gathering system Base Case. April 2015 the total rate is ~750 103m3/d, and at the end of the 12 months it has declined to ~650 103m3/d.

Figure 4: Delivery rates for a 12 month forecast for the well shut-in scenario. April 2015 the total rate is ~700 103m3/d, and at the end of the 12 months it has declined to ~615 103m3/d. Total delivery rates are approximately 6% less than the base case.

Total field production in the scenario with shut-in wells is lower than the Base Case, which is expected. If you have a delivery contract to meet, you will want to check the total field production with shut-in wells to make sure the field can still meet that contract, and if not, how far short of the contract you might be. Check the forecasted field production over time to determine on which date you fall short of delivery commitments and consider bringing wells online to mitigate. You can also create another scenario where shut-in wells are put back on production.

Before deciding if the scenario of shutting-in wells should be pursued, you will also want to know how much operating expenses will be reduced compared to the Base Case. The economics feature in IHS Piper can be used to make a Net Present Value report and Cash Flow report. These reports are available both for the field as well as by facility.

Shutting-in wells may have other negative operational impacts. Compressors may not need to run at full capacity to maintain production due to decreased overall rates. If you have multiple compressor units operating in parallel service, you may be able to take one compressor off line, decommission it, or move it to another location without impacting wells that are still on production. For a different approach to the same problem, you could deactivate one compressor first, and then determine how many wells to shut-in at the beginning of the forecast; then, as time progresses you could gradually bring wells back online to ensure maximum usage at that compressor bank.

After you have considered what impact changes to the field might have, compare model results between the Base Case and alternate scenarios to determine the best option. We recommend you use diagnostic maps to quickly identify areas of concern. In the case of shutting-in wells, you might want to consider:

  • Does reducing field production have a noticeable effect on frictional pressure losses in the pipelines? If so, will wellhead pressures also drop, thereby increasing drawdown on those wells?
  • Are there areas with low gas velocity where liquids may stagnate? If so, should you consider closing some pipeline loops to keep fluid velocities high enough to sweep liquids?
  • With reduced field production, can compression capacity be reduced without adverse effects?

Finally, you may want to test how short term cost cutting through shutting-in wells impacts longer term field revenues. Hydrocarbons left in place for the short term may have higher value if produced at a later date when commodity prices have increased. Use the price deck in the economics feature to change the commodity price over time and run a future forecast and net present value report to compare revenues if production is delayed.

Figure 5: Gas price deck feature in IHS Piper.

Depending upon how long you want to reduce expenditures, delaying production might yield the most profitable result in the longer term. Consider creating a modified well shut-in scenario where commodity prices increase in two years. Make sure your field production meets the minimum contracted rates over that time.Then change the commodity price at the two year mark and forecast for another three years. How does the total revenue generated by your field in this scenario compare to the Base Case over five years?

Your findings may indicate that additional scenarios need testing, or that the current gathering system state is the best configuration for current market conditions. If you use diagnostic maps, production rates and economic indicators for your models, your decisions will be based upon quantifiable data.

Use the economics feature in IHS Piper to evaluate changes in operational spending, and the impact of changing commodities prices. Total field rates can be helpful to evaluate how field production will be affected by alternate field scenarios both immediately and in the longer term.

While cutting costs is one way to maintain profitability, another is to increase revenues. The blog article "Field Optimization Using IHS Piper - Part III: Optimizing Compression to Increase Revenue" will discuss how to investigate compression placement and capacity to optimize field production, and as a result increase revenues. The economics feature in IHS Piper can be used to evaluate if the increased compression expenditures are offset enough by increased revenues to be a viable field development plan.

For Further Reference:

http://blog.ihs.com/rpe-a-recipe-for-reliable-gathering-system-modeling
https://ihsmarkit.com/products/oil-gas-training-videos.html

One Petro - SPE No. 75946 "Case Study: Including the Effects of Stagnant Water in Gas Gathering System Modeling" by James Young, Ralph McNeil, Jeffery Knibbs

"An Effective Method for Modeling Non-Moving Stagnant Liquid Columns in Gas Gathering Systems" by R.G. McNeil, D.R. Lillico

Tracy Brenner, Principal Analyst/Researcher, IHS Markit Engineering



This article was published by S&P Global Commodity Insights and not by S&P Global Ratings, which is a separately managed division of S&P Global.

Previous Next
Recommended for you

Energy Solutions
Consulting
Upstream Oil & Gas
Subscribe to the Blog

Receive monthly energy insights from our blog right in your inbox.

Subscribe

CERAWeek 2024

Multidimensional Energy Transition: Markets, climate, technology and geopolitics
March 6 – 10 in Houston, TX

LEARN MORE
Related Posts
VIEW ALL
Blog Sep 07, 2024

Indonesia's block awards drive exploration across mature, emerging, and frontier areas

Blog Sep 06, 2024

Fueling growth: Indonesia's block awards drive exploration across mature, emerging, and frontier areas

Blog Sep 06, 2024

Not in my backyard… or yours: What the new EU Methane Rule means for Kazakh crude oil exports

VIEW ALL
{"items" : [ {"name":"share","enabled":true,"desc":"<strong>Share</strong>","mobdesc":"Share","options":[ {"name":"facebook","url":"https://www.facebook.com/sharer.php?u=http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fresearch-analysis%2ffield-optimization-using-ihs-piper-part-ii-cost-cutting-by-shutting-in-wells.html","enabled":true},{"name":"twitter","url":"https://twitter.com/intent/tweet?url=http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fresearch-analysis%2ffield-optimization-using-ihs-piper-part-ii-cost-cutting-by-shutting-in-wells.html&text=Field+optimization+using+S%26P+Global+Piper+%e2%80%93+Part+II%3a+Cost+cutting+by+shutting-in+wells","enabled":true},{"name":"linkedin","url":"https://www.linkedin.com/sharing/share-offsite/?url=http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fresearch-analysis%2ffield-optimization-using-ihs-piper-part-ii-cost-cutting-by-shutting-in-wells.html","enabled":true},{"name":"email","url":"?subject=Field optimization using S&P Global Piper – Part II: Cost cutting by shutting-in wells&body=http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fresearch-analysis%2ffield-optimization-using-ihs-piper-part-ii-cost-cutting-by-shutting-in-wells.html","enabled":true},{"name":"whatsapp","url":"https://api.whatsapp.com/send?text=Field+optimization+using+S%26P+Global+Piper+%e2%80%93+Part+II%3a+Cost+cutting+by+shutting-in+wells http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fresearch-analysis%2ffield-optimization-using-ihs-piper-part-ii-cost-cutting-by-shutting-in-wells.html","enabled":true}]}, {"name":"rtt","enabled":true,"mobdesc":"Top"} ]}
Filter Sort
  • About S&P Global Commodity Insights
  • Media Center
  • Advertisers
  • Careers
  • Contact Us
  • History
  • Glossary
  • S&P Global Inc.
  • Our Values
  • Overview
  • Investor Relations
  • Customer Care & Sales
  • Careers
  • Our History
  • News Releases
  • Support by Division
  • Get Support
  • Corporate Responsibility
  • Ventures
  • Quarterly Earnings
  • Report an Ethics Concern
  • Leadership
  • Press
  • SEC Filings & Reports
  • Office Locations
  • IOSCO ESG Rating & Data Product Statements
  • © 2025 by S&P Global Inc. All rights reserved.
  • Terms of Use
  • Cookie Notice
  • Privacy Policy
  • Client Privacy Portal
  • Do Not Sell My Personal Information
  • Site Map