Customer Logins

Obtain the data you need to make the most informed decisions by accessing our extensive portfolio of information, analytics, and expertise. Sign in to the product or service center of your choice.

Customer Logins

My Logins

All Customer Logins

Oxo Alcohols

Process Economics Program Report 21C

View Report for existing customers Go to Customer Login for existing customers
Learn more about Oxo Alcohols
Contact Sales
Contact Sales +1 844 301 7334

Published April 1988

This, the third supplement to PEP Report 21, covers the progress in oxo alcohol technology since Report 21B, which was issued in 1978. It includes hydroformylation, aldol condensation, hydrogenation, and related operations.

Three types of catalysts are used commercially for hydroformylation, namely, rhodium/phosphine, cobalt carbonyl, and cobalt/phosphine. Oil-soluble rhodium/phosphine catalysts have largely replaced the conventional cobalt carbonyl catalyst in the production of the n-butyral- dehyde intermediate from propylene. Recently, Ruhrchemie replaced a cobalt carbonyl catalyst with a water-soluble rhodium/phosphine catalyst in one of its units. The rhodium/phosphine process is more selective to the normal (as opposed to the iso) butyraldehyde at low temperature and low pressure than is the cobalt carbonyl process. A typical normal/iso ratio for the rhodium/phosphine process is around 9:1. The n-butyraldehyde is converted to n-butanol or 2-ethylhexanol through hydrogenation or aldol condensation/hydrogenation.

Cobalt carbonyl catalysts are not generally limited to the production of the aldehyde precursors of C6-C13 alcohols. Two U.S. producers, however, still use these catalysts to produce butyraldehydes in normal/iso ratios of 2:1 to 4:1 (Badische and Eastman).

The cobalt/phosphine catalyst, which enables hydroformylation and hydrogenation to be performed in a single step, is used exclusively by Shell--for n-butanol, 2-ethylhexanol, and C9-C15 alcohols. The cobalt/ phosphine catalyst also entails lower reaction temperatures and pressures than the cobalt carbonyl catalyst does. It provides a normal/iso ratio of 8:1.

This report presents and evaluates several oxo processes for manufacturing n-butyraldehyde, n-butanol, 2-ethylhexanol (2-EH), isodecyl alcohols, and C12-C15 primary linear alcohols. The Ziegler process and those processes making alcohols from natural products are covered in PEP Report 163.

Other PEP Related Reports:

  • Oxo Alcohols 21
  • Oxo Alcohols 21A
  • Oxo Alcohols 21B
  • Oxo Alcohols 21D
  • Oxo Alcohols 21E
Find the chemical market research you need
CONTACT AN EXPERT

Products & Solutions from related industries

Chemical Image

Chemical Process Economics Program PEP

Chemical Image

On-Purpose Acetic Acid – Chemical production and investment cost

Chemical Image

On Purpose Linear Alpha Olefin Processes – Chemical production and investment cost

Chemical Image

Polyols for Polyurethanes – Chemical production and investment cost

Chemical Image

ABS Resins– Chemical production and investment cost Published 1966

Chemical Image

ABS Resins– Chemical production and investment cost Published 1972

Chemical Image

ABS Resin– Chemical production and investment cost Published 1980

Chemical Image

Acetal Resins – Chemical production and investment cost

Chemical Image

Acetaldehyde – Chemical production and investment cost

Chemical Image

Acetal Resins – Chemical production and investment cost

Chemical Image

Acetal Resins – Chemical production and investment cost

Chemical Image

Acetal Resins – Chemical production and investment cost

Chemical Image

Acetal Resins – Chemical production and investment cost

Chemical Image

Acetic Acid and Acetic Anhydride – Chemical production and investment cost

Chemical Image

Acetic Acid and Acetic Anhydride – Chemical production and investment cost

Chemical Image

Acetone Methyl Ethyl Ketone MEK and Methyl Isobutyl Ketone

Chemical Image

Acetylene – Chemical production and investment cost

Chemical Image

Acetylene – Chemical production and investment cost

{"items" : [ {"name":"share","enabled":true,"desc":"<strong>Share</strong>","mobdesc":"Share","options":[ {"name":"facebook","url":"https://www.facebook.com/sharer.php?u=http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fproducts%2fchemical-technology-pep-oxo-alcohols-1988.html","enabled":true},{"name":"twitter","url":"https://twitter.com/intent/tweet?url=http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fproducts%2fchemical-technology-pep-oxo-alcohols-1988.html&text=Oxo+Alcohols+%e2%80%93+Chemical+production+and+investment+cost+%7c+S%26P+Global","enabled":true},{"name":"linkedin","url":"https://www.linkedin.com/sharing/share-offsite/?url=http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fproducts%2fchemical-technology-pep-oxo-alcohols-1988.html","enabled":true},{"name":"email","url":"?subject=Oxo Alcohols – Chemical production and investment cost | S&P Global&body=http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fproducts%2fchemical-technology-pep-oxo-alcohols-1988.html","enabled":true},{"name":"whatsapp","url":"https://api.whatsapp.com/send?text=Oxo+Alcohols+%e2%80%93+Chemical+production+and+investment+cost+%7c+S%26P+Global http%3a%2f%2fssl.ihsmarkit.com%2fcommodityinsights%2fen%2fci%2fproducts%2fchemical-technology-pep-oxo-alcohols-1988.html","enabled":true}]}, {"name":"rtt","enabled":true,"mobdesc":"Top"} ]}
Filter Sort